Seamount mythbusting

Seamounts—mountains beneath the waves—may not be conventionally thought of as large habitats on the global ecological stage, compared to say, forests or estuaries.  But there’s quite a bit of them to say the least, perhaps in the hundreds of thousands. The global seamount biome, or the total area represented by seamounts within the global ocean, has been shown to be larger than the whole of Australia.  Large seamounts have a global area of nearly 10 million square kilometers, more than wetlands, seagrass, or temperate grassland biomes. This is actually a conservative number:  if smaller seamounts (rising between 1000-1500 meters from the seafloor) are included, the global seamount area rises to 28.8 million square kilometers (Etnoyer et al.2010).

Unidentified cnidarian from Davidson Seamount. MBARI, NOAA-OER.

Fewer than 200 seamounts have been intensively sampled.  Even so, the ecological structure and evolution of seamount biological communities has been expounded upon and debated for more than a few years now.  For example, it is a possibility that seamounts, as submarine islands, are ecologically isolated to a degree and function within the island biogeography paradigm, having high levels of endemic species (species that are found no where else).  A new study in Marine Ecology (Rowden et al. 2010) has   compiled the evidence for and against the existing concepts in seamount ecology and serves as a healthy breath of context.

Unsupported:

Seamounts function as islands and have hydrological mechanisms, e.g. Taylor columns, that limit dispersal of larvae, and have high numbers of endemic species.  Although, it should be noted that cryptic speciation (micro-endemism) has been recently indicated on seamounts.

Plausible:

Seamounts as stepping-stones for the dispersal of species (seamounts provide relatively shallow substrate in the open ocean), host increased numbers of species and biomass, and are highly productive.

Seamounts are distinct from other deep-sea habitat at the same depth, have high species richness, are population sources for continental slope sinks, and can act as refugia from dire oceanic-basin scale events.

Supported:

Seamounts are vulnerable to fishing (remember the precipitous collapse of the orange roughy fishery?) and to bottom trawling.

With the scarcity of seamounts actually visited and sampled, keep in mind that Unsupported and Plausible concepts could very well be supported (or not) in future studies.  For one, seamount endemism is a hotly debated topic, and more research is surely ongoing.  This work is interesting not only for providing a review of the evidence, but by doing so, it highlights the need for additional research in the deep ocean and gently suggests that some operating ideas for seamount ecosystems may not be as cut in stone as previously thought, or at least have more variability from seamount to seamount.  This is a great example of science being an evolving body of work and methodology, not only a compilation of knowledge.  As a former professor of mine once told me, “what we know is not as important as know we know it.”

One idea that Rowden et al. 2010 list as Plausible is that seamounts could shelter biota from environmental changes.  The threat of ocean acidification—the alteration of seawater carbonate chemistry—not only impacts shallow corals, but is thought to put deep-sea corals at risk.  By using predicted values for environmental parameters, for example, aspects of seawater chemistry, and global habitat suitability models, Tittensor et al. (2010) show that seamount summits are consistently less impacted by ocean acidification than the surrounding benthos under various IPCC scenarios.  The researchers also point out that the largest areas of suitable habitat for deep-sea corals are around New Zealand and in the North Atlantic.  These areas are largely within various countries’ Exclusive Economic Zones, rather than the high seas, suggesting that habitat conservation measures taken by individual nations could have large effects for these potential oceanic refuges.

References:
Etnoyer PJ, Wood J, Shirley TC (2010). How large is the seamount biome? Oceanography, 23 (1), 206-209
Rowden, A., Dower, J., Schlacher, T., Consalvey, M., & Clark, M. (2010). Paradigms in seamount ecology: fact, fiction and future Marine Ecology, 31, 226-241 DOI: 10.1111/j.1439-0485.2010.00400.x
Tittensor, D., Baco, A., Hall-Spencer, J., Orr, J., & Rogers, A. (2010). Seamounts as refugia from ocean acidification for cold-water stony corals Marine Ecology, 31, 212-225 DOI: 10.1111/j.1439-0485.2010.00393.x

About these ads

2 thoughts on “Seamount mythbusting

  1. Pingback: Stomatolinks | Deep Sea News

  2. Pingback: A glimpse at Davidson Seamount | Uncharted Atolls

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s